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ABSTRACT: This paper deals with the most recent 
development that have took place to solve P vs NP problem. 
We will look into different ways which have tried to give a 
solution to this problem. The paper includes the proof 
complexity and various other aspects which enlightens the 
research that have taken place in the field so far. With a deep 
and thorough analysis of various works by different authors 
around the world, it can be concluded that the problem is still 
unresolved but there is a lot of scope still left to explore which 
requires further research. 
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1. INTRODUCTION

As we solve larger and more complex problems with 
greater computational power and cleverer algorithms, the 
problems we cannot tackle begin to stand out. The theory 
of NP-completeness helps us understand these limitations 
and the P versus NP problems begins to loom large not just 
as an interesting theoretical question in computer science, 
but as a basic principle that permeates all the sciences. So 
while we don't expect the P versus NP problem to be 
resolved in the near future, the question has driven 
researchin a number of topics to help us understand, handle 
and even take advantage of the hardness of various 
computational problems. 

In this survey we will look at how various researches 
have tried to solve the P versus NP problem but also how 
this question has shaped so much of the research in 
computer science and be-yond. We will look at how to 
handle NP-complete problems and the theory that has 
developed from those approaches. We show how a new 
type of interactive proof systems led to limitations of 
approximation algorithms. We consider whether quantum 
computer can solve NP-complete problems. We end 
describing a new long-term project that will try to separate 
P from NP using algebraic-geometric techniques. 

2. WHAT IS THE P VERSUS NP PROBLEM?
Suppose there is a large group of students that we need 

to pair up to work on a presentation. We have the 
knowledge which students are compatible with each other 
and we want to put them in compatible groups of two. 
Looking at all possible pairs, even for 40 students we 
would have more than three hundred billion trillion 
possible pairings. 

But many related problems do not have such an efficient 
algorithm. What if we wanted to make groups of three 
students with each pair of students in each group 
compatible (Partition Into Triangles)? What if we wanted to 
find a large group of students all of whom are compatible 
with each other (Clique)? What if we wanted to sit the 

students around a large round table with no incompatible 
students sitting next to each other (Hamiltonian Cycle)? 
What if we put the students into three groups so that each 
student is in the same group with only his or her 
compatibles (3-Coloring)? 

So P = NP means that for every problem that has an 
efficiently verifiable solution, we can find that solution 
efficiently as well. 

We call the very hardest  NP problems which includes: 
 Partition Into Triangles
 Clique
 Hamiltonian Cycle
 3-Coloring

NP-complete, i.e. given an efficient algorithm for one of 
them, we can find an efficient algorithm for all of them and 
in fact any problem in NP. 

As computers grew cheaper and more powerful, 
computation started playing a major role in nearly every 
academic field, especially the sciences. The more scientists 
can do with computers, the more they realize some 
problems seem computationally difficult. Many of these 
fundamental problems turn out to be NP-complete.  

3. WHAT IF P = NP?

To understand the importance of the P versus NP 
problem let us imagine a world where P = NP. Technically 
we could have P = NP but not have practical algorithms for 
most NP-complete problems. But suppose in fact that we 
do have very quick algorithms for all these problems. 

Many focus on the negative, that if P = NP then public-
key cryptography becomes impossible. True but what we 
will gain from P = NP will make the whole internet look 
like a footnote in history. 

Since all the NP-complete optimization problems 
become easy, everything will be much more efficient. 
Transportation of all forms will be scheduled optimally to 
move people and goods around quicker and cheaper. 
Manufacturers can improve their production to increase 
speed and create less waste. And I'm just scratching the 
surface. 

P = NP would also have big implications in 
mathematics. One could find short fully logical proofs for 
theorems but these fully logical proofs are usually 
extremely long. But we can use the Occam razor principle 
to recognize and verify mathematical proofs as typically 
written in journals. We can then find proofs of theorems 
that have reasonably length proofs say in under 100 pages. 
A person who proves P = NP would walk home from the 
Clay Institute not with one million-dollar check but with 
seven (actually six since the Poincare Conjecture appears 
solved). 
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4. APPROACHES TO SHOWING P 6= NP 

       4.1  DIAGONALIZATION 

Can we just construct an NP language L specifically 
designed so that every single polynomial-time algorithm 
fails to compute L properly on some input? 

Cantor [8] showed that the real numbers are un-
countable using a technique known as diagonalization. 
Given a countable list of reals, Cantor showed how to 
create a new real number not on that list. 

Turing, in his seminal paper on computation [39], used a 
similar technique to show that the Halting problem is not 
computable. In the 1960's complexity theorists used 
diagonalization to show that given more time or memory 
one can solve more problems. Why not use diagonalization 
to separate NP from P? 

Diagonalization requires simulation. Also a 
diagonalization proof would likely relativize, i.e., work 
even if all machines involved have access to the same addi-
tional information.  

 

5. CIRCUIT COMPLEXITY 

To show P 6= NP it is su cient to show some NP-
complete problem cannot be solved by relatively small 
circuits of AND, OR and NOT gates (the number of gates 
bounded by a fixed polynomial in the input size). 

Saxe and Sipser [16] showed that small circuits cannot 
solve the parity function if the circuits have a fixed number 
of layers of gates. In 1985, Razborov [32] showed the NP-
complete problem of nding a large clique does not have 
small circuits if one only allows AND and OR gates (no 
NOT gates). If one extends Razborov's result to general 
circuits one will have proved P 6= NP. 

Razborov later showed his techniques would fail 
miserably if one allows NOT gates [33]. Razborov and 
Rudich [34] develop a notion of \natural" proofs and give 
evidence that our limited techniques in circuit complexity 
cannot be pushed much further. And in fact we haven't seen 
any significantly new circuit lower bounds in the past 
twenty years. 

 

6. PROOF COMPLEXITY 

Consider the set of Tautologies, the Boolean formulas of 
variables over ANDs, ORs an NOTs such that every setting 
of the variables to True and False makes true, for example 
the formula 

(x AND y) OR (NOT x) OR (NOT y): 
A literal is a variable or its negation, i.e. x or NOT x. A 

formula, like the one above, is in Disjunctive Normal Form 
(DNF) if it is the OR of ANDs of one or more literals. 

If a formula is not a tautology, we can give an easy proof 
of that fact by exhibiting an assignment of the variables that 
makes false. But if were indeed a tautology we don't expect 
short proofs of that. If one could prove there are no short 
proofs of tautology that would imply P 6= NP. 

In 1985, Haken [22] showed that tautologies that encode 
the pigeonhole principle (n + 1 pigeons in n holes means 

some hole has more than one pigeon) do not have short 
resolution proofs. 

Since then complexity theorists have shown similar 
weaknesses in a number of other proof systems including 
cutting planes, algebraic proof systems based on 
polynomials and restricted versions of proofs using the 
Frege axioms, the basic axioms one learns in an 
introductory logic course. 

But to prove P 6= NP we would need to show that 
tautolo-gies cannot have short proofs in an arbitrary proof 
system. Even a breakthrough result showing tautologies 
don't have short general Frege proofs would not su ce in 
separating NP from P. 

7.  DEALING WITH HARDNESS 

So you have an NP-complete problem you just have to 
solve. If as we believe P 6= NP you won't nd a general 
algorithm that will correctly and accurately solve your 
problem all of the time. But sometimes you need to solve 
the problem any-way. All hope is not lost. In this section 
we describe some of the tools one can use on NP-complete 
problems and how computational complexity theory studies 
these approaches. Typically one needs to combine several 
of these approaches when tackling NP-complete problems 
in the real world. 

8. BRUTE FORCE 

Computers have gone faster. Many moderate size 
problems can be solved by brute force search through all 
possibilities. The NP- complete travelling salesperson 
problem can be solved by using extensions of the cutting-
plane method. 3 SAT remains NP- complete but the best 
algorithms can solve SAT problems on about 100 variables. 
For satisfiability on general formulae searching all 
possibilities is better. Since all these algorithms have 
exponential growth in their running times, even a small 
increase in problem size can kill an efficient algorithm. 
Brute Force can alone not solve NP-complete problems. 

8.1 PARAMETERIZED COMPLEXITY 

In a vertex cover problem, we find a set of K central 
people such that for every compatible pair of people, at 
least one of them is central. For small K we can determine 
whether a central set of people exists efficiently no matter 
the total number n of people we are considering. For the 
Clique problem even for small K the problem can still be 
diffcult. 

8.2  APPROXIMATION 

We can achieve a well approximate answer. In travelling 
salesperson problem the distances can be given as 
Euclidian Distance. This problem remains NP-complete but 
Arora [5] gives an efficient algorithm that gets very close to 
the best possible route. the MAX-CUT problem of dividing 
people into two groups to maximize the number of 
incompatibles between the groups. Goemans and 
Williamson [18] uses semi-definite programming to give a 
division of people only a .878567 factor of the best 
possible. 
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9. HEURISTICS AND AVERAGE-CASE COMPLEXITY 

The study of NP-completeness focuses on how 
algorithms perform on the worst possible inputs. Many 
computer scientists employ various heuristics to solve NP-
complete problems that arise from the specific problems in 
their fields. SAT receives more attention than any other 
Boolean formulas. Most natural NP-complete problems 
have simple efficient reductions to the satisfiability of 
Boolean formula. In competition these SAT solvers can 
often settle satisfiability of formulas of a million variables 
[1]. Levin [29] developed a theory of efficient algorithms 
over a specific distribution and formulated a distributional 
version of the P versus NP problem. Some problems like 
versions of the shortest vector problem in a lattice or 
computing the permanent of a matrix are hard on average 
exactly when they are hard on worst-case inputs, but 
neither of these problems is believed to be NP-complete. 
Whether similar worst-to-average reductions hold for NP-
complete sets is an important open problem. 

 

10.  USING HARDNESS 

In Section 3 we saw the nice world that arises when we 
assume P = NP. But we expect P 6= NP to hold in very 
strong ways. We can use strong hardness assumptions as a 
positive tool, particularly to create cryptographic protocols 
and to reduce or even eliminate the need of random bits in 
probabilistic algorithms. 

 

11. CRYPTOGRAPHY 

If P = NP then public-key cryptography is impossible. 
Assuming P 6= NP is not enough to get public-key 
protocols, instead we need strong average-case assumptions 
about the di culty of factoring or related problems. We can 
do much more than just public-key cryptography using hard 
problemsOn-line poker is generally played through some 
trusted website, usually somewhere in the Caribbean. Can 
we play poker over the Internet without a trusted server? 
Using the right cryptographic assumptions, not only poker 
but any protocol that uses a trusted party can be replaced by 
one that uses no trusted party and the players can't cheat or 
learn anything new beyond what they could do with the 
trusted party.above 

 

12. ELIMINATING RANDOMNESS 

Most notably there were probabilistic algorithms for 
determining whether a number is prime. Truly independent 
and uniform random bits are either very difficult or 
impossible to produce. Computer algorithms instead use 
pseudorandom generators to generate a sequence of bits 
from some given seed. The generators typically found on 
our computers usually work well but occasionally give 
incorrect results both in theory and in practice. We can 
create theoretically better pseudorandom genera-tors in two 
different ways, one based on the strong hardness 
assumptions of cryptography and the other based on worst-
case complexity assumptions. I will focus on this second 
approach. 

13. COULD QUANTUM COMPUTERS SOLVE NP-
COMPLETE PROBLEMS? 

While we have randomized and non-randomized 
efficient algorithms for determining whether a number is 
prime, these algorithms usually don't give us the factors of 
a composite number. Much of modern cryptography relies 
on the fact that factoring or similar problems do not have 
efficient algorithms. So could quantum computers one day 
solve NP-complete problems? Unlikely. Lov Grover [20] 
did find a quantum algorithm that works on general NP 
problems but that algorithm only achieves a quadratic 
speed-up and we have evidence that those techniques will 
not go further. 

Meanwhile quantum cryptography, using quantum 
mechanics to achieve some cryptographic protocols without 
hardness assumptions, has had some success both in theory 
and in practice. 

14.  FUTURE SCOPE 

Ketan Mulmuley and Milind Sohoni have presented an 
approach to the P vs. NP problem through algebraic 
geometry, dubbed Geometric Complexity Theory, or GCT 
[30]. This approach seems to avoid the diffculties 
mentioned in Section 4 but requires deep mathematics that 
could require many years or decades to carry through. 

Although all that is necessary is to show that Pn contains 
an integral point for all n, Mulmuley and Sohoni states that 
this direct approach would be difficult. Under this 
approach, there are three significant steps remaining: 

Prove that the LP relaxation solves the integer 
programming problem for Pn in polynomial time, find an 
efficient, simple combinatorial algorithm for the integer 
programming problem for Pn, and prove that this simple 
algorithm always answers \yes."  

Although step (1) is difficult, Mulmuley and Sohoni 
have provided definite conjectures based on reasonable 
mathematical analogies that would solve (1). In contrast, 
the path to completing steps (2) and (3) is less clear. 
Despite these remaining hurdles, even solving the 
conjectures involved in 

(1) could provide some insight to the P versus NP 
problem. 

15. CONCLUSION 

The P versus NP problem has gone from an interesting 
problem related to logic to perhaps the most fundamental 
and important mathematical question of our time, whose 
importance only grows as computers become more 
powerful and widespread.  

Proving P 6= NP would not be the end of the story, it 
would just show that NP-complete problem don't have 
efficient algorithms for all inputs but many questions might 
remain. Cryptography for example would require that a 
problem like factoring (not believed to be NP-complete) is 
hard for randomly drawn composite numbers. 

Proving P 6= NP might not be the start of the story ei-
ther. Weaker separations remain perplexingly di cult, for 
example showing that Boolean-formula Satisfiability 
cannot be solved in near-linear time or showing that some 
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problem using a certain amount of memory cannot be 
solved using roughly the same amount of time. 

None of us truly understand the P versus NP problem, 
we have only begun to peel the layers around this 
increasingly complex question. Perhaps we will see a 
resolution of the P versus NP problem in the near future but 
I almost hope not. The P versus NP problem continues to 
inspire and boggle the mind and continued exploration of 
this problem will lead us to yet even new complexities in 
that truly mysterious process we call computation. 
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