
P VS NP PROBLEM
Shivam Sharma

Shivam Sharma has completed his B.Tech, Computer Science and Engineering

from JSS Academy of Technology, Noida

ABSTRACT: This paper deals with the most recent
development that have took place to solve P vs NP problem.
We will look into different ways which have tried to give a
solution to this problem. The paper includes the proof
complexity and various other aspects which enlightens the
research that have taken place in the field so far. With a deep
and thorough analysis of various works by different authors
around the world, it can be concluded that the problem is still
unresolved but there is a lot of scope still left to explore which
requires further research.

KEYWORDS: Clique, cloning, brute force.

1. INTRODUCTION

As we solve larger and more complex problems with
greater computational power and cleverer algorithms, the
problems we cannot tackle begin to stand out. The theory
of NP-completeness helps us understand these limitations
and the P versus NP problems begins to loom large not just
as an interesting theoretical question in computer science,
but as a basic principle that permeates all the sciences. So
while we don't expect the P versus NP problem to be
resolved in the near future, the question has driven
researchin a number of topics to help us understand, handle
and even take advantage of the hardness of various
computational problems.

In this survey we will look at how various researches
have tried to solve the P versus NP problem but also how
this question has shaped so much of the research in
computer science and be-yond. We will look at how to
handle NP-complete problems and the theory that has
developed from those approaches. We show how a new
type of interactive proof systems led to limitations of
approximation algorithms. We consider whether quantum
computer can solve NP-complete problems. We end
describing a new long-term project that will try to separate
P from NP using algebraic-geometric techniques.

2. WHAT IS THE P VERSUS NP PROBLEM?
Suppose there is a large group of students that we need

to pair up to work on a presentation. We have the
knowledge which students are compatible with each other
and we want to put them in compatible groups of two.
Looking at all possible pairs, even for 40 students we
would have more than three hundred billion trillion
possible pairings.

But many related problems do not have such an efficient
algorithm. What if we wanted to make groups of three
students with each pair of students in each group
compatible (Partition Into Triangles)? What if we wanted to
find a large group of students all of whom are compatible
with each other (Clique)? What if we wanted to sit the

students around a large round table with no incompatible
students sitting next to each other (Hamiltonian Cycle)?
What if we put the students into three groups so that each
student is in the same group with only his or her
compatibles (3-Coloring)?

So P = NP means that for every problem that has an
efficiently verifiable solution, we can find that solution
efficiently as well.

We call the very hardest NP problems which includes:
 Partition Into Triangles
 Clique
 Hamiltonian Cycle
 3-Coloring

NP-complete, i.e. given an efficient algorithm for one of
them, we can find an efficient algorithm for all of them and
in fact any problem in NP.

As computers grew cheaper and more powerful,
computation started playing a major role in nearly every
academic field, especially the sciences. The more scientists
can do with computers, the more they realize some
problems seem computationally difficult. Many of these
fundamental problems turn out to be NP-complete.

3. WHAT IF P = NP?

To understand the importance of the P versus NP
problem let us imagine a world where P = NP. Technically
we could have P = NP but not have practical algorithms for
most NP-complete problems. But suppose in fact that we
do have very quick algorithms for all these problems.

Many focus on the negative, that if P = NP then public-
key cryptography becomes impossible. True but what we
will gain from P = NP will make the whole internet look
like a footnote in history.

Since all the NP-complete optimization problems
become easy, everything will be much more efficient.
Transportation of all forms will be scheduled optimally to
move people and goods around quicker and cheaper.
Manufacturers can improve their production to increase
speed and create less waste. And I'm just scratching the
surface.

P = NP would also have big implications in
mathematics. One could find short fully logical proofs for
theorems but these fully logical proofs are usually
extremely long. But we can use the Occam razor principle
to recognize and verify mathematical proofs as typically
written in journals. We can then find proofs of theorems
that have reasonably length proofs say in under 100 pages.
A person who proves P = NP would walk home from the
Clay Institute not with one million-dollar check but with
seven (actually six since the Poincare Conjecture appears
solved).

Shivam Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5022-5025

www.ijcsit.com 5022

4. APPROACHES TO SHOWING P 6= NP

 4.1 DIAGONALIZATION

Can we just construct an NP language L specifically
designed so that every single polynomial-time algorithm
fails to compute L properly on some input?

Cantor [8] showed that the real numbers are un-
countable using a technique known as diagonalization.
Given a countable list of reals, Cantor showed how to
create a new real number not on that list.

Turing, in his seminal paper on computation [39], used a
similar technique to show that the Halting problem is not
computable. In the 1960's complexity theorists used
diagonalization to show that given more time or memory
one can solve more problems. Why not use diagonalization
to separate NP from P?

Diagonalization requires simulation. Also a
diagonalization proof would likely relativize, i.e., work
even if all machines involved have access to the same addi-
tional information.

5. CIRCUIT COMPLEXITY

To show P 6= NP it is su cient to show some NP-
complete problem cannot be solved by relatively small
circuits of AND, OR and NOT gates (the number of gates
bounded by a fixed polynomial in the input size).

Saxe and Sipser [16] showed that small circuits cannot
solve the parity function if the circuits have a fixed number
of layers of gates. In 1985, Razborov [32] showed the NP-
complete problem of nding a large clique does not have
small circuits if one only allows AND and OR gates (no
NOT gates). If one extends Razborov's result to general
circuits one will have proved P 6= NP.

Razborov later showed his techniques would fail
miserably if one allows NOT gates [33]. Razborov and
Rudich [34] develop a notion of \natural" proofs and give
evidence that our limited techniques in circuit complexity
cannot be pushed much further. And in fact we haven't seen
any significantly new circuit lower bounds in the past
twenty years.

6. PROOF COMPLEXITY

Consider the set of Tautologies, the Boolean formulas of
variables over ANDs, ORs an NOTs such that every setting
of the variables to True and False makes true, for example
the formula

(x AND y) OR (NOT x) OR (NOT y):
A literal is a variable or its negation, i.e. x or NOT x. A

formula, like the one above, is in Disjunctive Normal Form
(DNF) if it is the OR of ANDs of one or more literals.

If a formula is not a tautology, we can give an easy proof
of that fact by exhibiting an assignment of the variables that
makes false. But if were indeed a tautology we don't expect
short proofs of that. If one could prove there are no short
proofs of tautology that would imply P 6= NP.

In 1985, Haken [22] showed that tautologies that encode
the pigeonhole principle (n + 1 pigeons in n holes means

some hole has more than one pigeon) do not have short
resolution proofs.

Since then complexity theorists have shown similar
weaknesses in a number of other proof systems including
cutting planes, algebraic proof systems based on
polynomials and restricted versions of proofs using the
Frege axioms, the basic axioms one learns in an
introductory logic course.

But to prove P 6= NP we would need to show that
tautolo-gies cannot have short proofs in an arbitrary proof
system. Even a breakthrough result showing tautologies
don't have short general Frege proofs would not su ce in
separating NP from P.

7. DEALING WITH HARDNESS

So you have an NP-complete problem you just have to
solve. If as we believe P 6= NP you won't nd a general
algorithm that will correctly and accurately solve your
problem all of the time. But sometimes you need to solve
the problem any-way. All hope is not lost. In this section
we describe some of the tools one can use on NP-complete
problems and how computational complexity theory studies
these approaches. Typically one needs to combine several
of these approaches when tackling NP-complete problems
in the real world.

8. BRUTE FORCE

Computers have gone faster. Many moderate size
problems can be solved by brute force search through all
possibilities. The NP- complete travelling salesperson
problem can be solved by using extensions of the cutting-
plane method. 3 SAT remains NP- complete but the best
algorithms can solve SAT problems on about 100 variables.
For satisfiability on general formulae searching all
possibilities is better. Since all these algorithms have
exponential growth in their running times, even a small
increase in problem size can kill an efficient algorithm.
Brute Force can alone not solve NP-complete problems.

8.1 PARAMETERIZED COMPLEXITY

In a vertex cover problem, we find a set of K central
people such that for every compatible pair of people, at
least one of them is central. For small K we can determine
whether a central set of people exists efficiently no matter
the total number n of people we are considering. For the
Clique problem even for small K the problem can still be
diffcult.

8.2 APPROXIMATION

We can achieve a well approximate answer. In travelling
salesperson problem the distances can be given as
Euclidian Distance. This problem remains NP-complete but
Arora [5] gives an efficient algorithm that gets very close to
the best possible route. the MAX-CUT problem of dividing
people into two groups to maximize the number of
incompatibles between the groups. Goemans and
Williamson [18] uses semi-definite programming to give a
division of people only a .878567 factor of the best
possible.

Shivam Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5022-5025

www.ijcsit.com 5023

9. HEURISTICS AND AVERAGE-CASE COMPLEXITY

The study of NP-completeness focuses on how
algorithms perform on the worst possible inputs. Many
computer scientists employ various heuristics to solve NP-
complete problems that arise from the specific problems in
their fields. SAT receives more attention than any other
Boolean formulas. Most natural NP-complete problems
have simple efficient reductions to the satisfiability of
Boolean formula. In competition these SAT solvers can
often settle satisfiability of formulas of a million variables
[1]. Levin [29] developed a theory of efficient algorithms
over a specific distribution and formulated a distributional
version of the P versus NP problem. Some problems like
versions of the shortest vector problem in a lattice or
computing the permanent of a matrix are hard on average
exactly when they are hard on worst-case inputs, but
neither of these problems is believed to be NP-complete.
Whether similar worst-to-average reductions hold for NP-
complete sets is an important open problem.

10. USING HARDNESS

In Section 3 we saw the nice world that arises when we
assume P = NP. But we expect P 6= NP to hold in very
strong ways. We can use strong hardness assumptions as a
positive tool, particularly to create cryptographic protocols
and to reduce or even eliminate the need of random bits in
probabilistic algorithms.

11. CRYPTOGRAPHY

If P = NP then public-key cryptography is impossible.
Assuming P 6= NP is not enough to get public-key
protocols, instead we need strong average-case assumptions
about the di culty of factoring or related problems. We can
do much more than just public-key cryptography using hard
problemsOn-line poker is generally played through some
trusted website, usually somewhere in the Caribbean. Can
we play poker over the Internet without a trusted server?
Using the right cryptographic assumptions, not only poker
but any protocol that uses a trusted party can be replaced by
one that uses no trusted party and the players can't cheat or
learn anything new beyond what they could do with the
trusted party.above

12. ELIMINATING RANDOMNESS

Most notably there were probabilistic algorithms for
determining whether a number is prime. Truly independent
and uniform random bits are either very difficult or
impossible to produce. Computer algorithms instead use
pseudorandom generators to generate a sequence of bits
from some given seed. The generators typically found on
our computers usually work well but occasionally give
incorrect results both in theory and in practice. We can
create theoretically better pseudorandom genera-tors in two
different ways, one based on the strong hardness
assumptions of cryptography and the other based on worst-
case complexity assumptions. I will focus on this second
approach.

13. COULD QUANTUM COMPUTERS SOLVE NP-
COMPLETE PROBLEMS?

While we have randomized and non-randomized
efficient algorithms for determining whether a number is
prime, these algorithms usually don't give us the factors of
a composite number. Much of modern cryptography relies
on the fact that factoring or similar problems do not have
efficient algorithms. So could quantum computers one day
solve NP-complete problems? Unlikely. Lov Grover [20]
did find a quantum algorithm that works on general NP
problems but that algorithm only achieves a quadratic
speed-up and we have evidence that those techniques will
not go further.

Meanwhile quantum cryptography, using quantum
mechanics to achieve some cryptographic protocols without
hardness assumptions, has had some success both in theory
and in practice.

14. FUTURE SCOPE

Ketan Mulmuley and Milind Sohoni have presented an
approach to the P vs. NP problem through algebraic
geometry, dubbed Geometric Complexity Theory, or GCT
[30]. This approach seems to avoid the diffculties
mentioned in Section 4 but requires deep mathematics that
could require many years or decades to carry through.

Although all that is necessary is to show that Pn contains
an integral point for all n, Mulmuley and Sohoni states that
this direct approach would be difficult. Under this
approach, there are three significant steps remaining:

Prove that the LP relaxation solves the integer
programming problem for Pn in polynomial time, find an
efficient, simple combinatorial algorithm for the integer
programming problem for Pn, and prove that this simple
algorithm always answers \yes."

Although step (1) is difficult, Mulmuley and Sohoni
have provided definite conjectures based on reasonable
mathematical analogies that would solve (1). In contrast,
the path to completing steps (2) and (3) is less clear.
Despite these remaining hurdles, even solving the
conjectures involved in

(1) could provide some insight to the P versus NP
problem.

15. CONCLUSION

The P versus NP problem has gone from an interesting
problem related to logic to perhaps the most fundamental
and important mathematical question of our time, whose
importance only grows as computers become more
powerful and widespread.

Proving P 6= NP would not be the end of the story, it
would just show that NP-complete problem don't have
efficient algorithms for all inputs but many questions might
remain. Cryptography for example would require that a
problem like factoring (not believed to be NP-complete) is
hard for randomly drawn composite numbers.

Proving P 6= NP might not be the start of the story ei-
ther. Weaker separations remain perplexingly di cult, for
example showing that Boolean-formula Satisfiability
cannot be solved in near-linear time or showing that some

Shivam Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5022-5025

www.ijcsit.com 5024

problem using a certain amount of memory cannot be
solved using roughly the same amount of time.

None of us truly understand the P versus NP problem,
we have only begun to peel the layers around this
increasingly complex question. Perhaps we will see a
resolution of the P versus NP problem in the near future but
I almost hope not. The P versus NP problem continues to
inspire and boggle the mind and continued exploration of
this problem will lead us to yet even new complexities in
that truly mysterious process we call computation.

ACKNOWLEDGMENTS

Thanks to Prof. Dhiraj Pandey for many useful
discussions and comments. . I also do not like to miss the
opportunity to acknowledge the contribution of all faculty
members of the department for their kind assistance and
cooperation during the study. Last but not the least, I
acknowledge my friends for their contribution in the
completion of the research work.

REFERENCES
[1] The international SAT competitions web page.

http://www.satcompetition.org.
[2] S. Aaronson. Is P versus NP formally independent? Bulletin of the

European Association for Theoretical Computer Science, 81, Oct.
2003.

[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of
Mathematics, 160(2):781{793, 2004.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. On the solution
of traveling salesman problems.

[5] DOCUMENTA MATHEMATICA, Extra Volume ICM III:645{656,
1998.

[6] S. Arora. Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems. Journal of the
ACM, 45(5):753{782, Sept. 1998.

[7] S. Arora and B. Barak. Complexity Theory: A Modern Approach.
Cambridge University Press, Cambridge, 2009.

[8] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP
question. SIAM Journal on Computing, 4(4):431{442, 1975.

[10] B. Cipra. This ising model is NP-complete. SIAM News, 33(6),
July/August 2000.

[11] V. Conitzer and T. Sandholm. New complexity results about Nash
equilibria. Games and Economic Behavior, 63(2):621{641, July
2008.

[12] S. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd ACM Symposium on the Theory of
Computing, pages 151{158. ACM, New York, 1971.

[13] R. Downey and M. Fellows. Parameterized Complexity. Springer,
1999.

[14] J. Edmonds. Paths, trees and owers. Canadian Journal of
Mathematics, 17:449{467, 1965.

[15] L. Fortnow and W. Gasarch. Computational complexity.
http://weblog.fortnow.com.

[16] L. Fortnow and S. Homer. A short history of computational
complexity. Bulletin of the European Association for Theoretical
Computer Science, 80, June 2003. Computational Complexity
Column. complexity of some boolean functions. Soviet
Mathematics{Doklady, 31:485{493, 1985.

[17] A. Razborov. On the method of approximations. In Proceedings of
the 21st ACM Symposium on the Theory of Computing, pages
167{176. ACM, New York, 1989.

[18] A. Razborov and S. Rudich. Natural proofs. Journal of Computer
and System Sciences, 55(1):24{35, Aug. 1997.

[19] P. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484{1509, 1997.

[20] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality.
SIAM Journal on Computing, 6:84{85, 1977. See also erratum
7:118, 1978.

[21] M. Sudan. Probabilistically checkable proofs. Communications of
the ACM, 52(3):76{84, Mar. 2009.

[22] R. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-
force search) algorithms. Annals of the History of Computing,
6(4):384{400, 1984.

[23] A. Turing. On computable numbers, with an application to the
Etscheidungs problem. Proceedings of the London Mathematical
Society, 42:230{265, 1936.

[24] D. van Melkebeek. A survey of lower bounds for satis ability and
related problems. Foundations and Trends in Theoretical Computer

Science, 2(197-303), 2007.

Shivam Sharma / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5022-5025

www.ijcsit.com 5025

